

CS3004 Multichannel potentiostat /galvanostat

CS3004 multichannel Potentiostat Galvanostat can achieve simultaneous measurements for up to 4 channels. For each channel, current control range is ± 500 mA, potential control range is ± 10 V. It supports floating mode, and uses Ethernet connection. Each channel is completely independent. Multichannel potentiostat brings convenience to those who have many samples, and is an ideal device for studies of energy materials, metal corrosion etc. **EIS module** (10μ Hz~1MHz) is equipped in all channels.

Advantages

High current/voltage: Applied potential range ±10V, current range ±500mA. It can meet the needs of most studies.

Comprehensive techniques: Built-in EIS ($10\mu Hz\sim1 MHz$) is equipped in all channels. There are comprehensive methods in each channel.

Warranty: 5 years' warranty. We're the manufacturer, and our engineers will provide excellent technical support anytime you need.

Low cost: The price includes instrument host, software (experiment control & data processing), necessary cables, dummy cell. No other charges.

Reliability &quality: We've been in the market for 20 years, and now is the No. 1 brand of potentiostat product in China

Applications

- (1) Reaction mechanism of Electrosynthesis, electrodeposition (electroplating), anodic oxidation, etc.
 - (2) Electrochemical analysis and sensor;
 - (3) New energy materials, advanced functional materials, photoelectronic materials;
 - (4) Corrosion study of metals in water, concrete and soil etc;
 - (5) Fast evaluation of corrosion inhibitor, water stabilizer, coating and cathodic protection efficiency.

Specifications

Specifications	
Number of channels: 4	Channel insulation resistance: >100M Ω
Communication: Ethernet	Lower-pass filter: covering 8-decade
Potential control range: ±10V	Constant current control range: ±500mA
Potential accuracy: 0.1%×full range±1mV	Current accuracy: 0.1%×full range
Potential resolution: 10μV(>100Hz), 3μV(<10Hz)	Current resolution: 1pA
Potential rise time: $< 1\mu s(<10mA),<10\mu s(<2A)$	Current range: 2nA ~500mA
Reference electrode input impedance: $10^{12}\Omega 20pF$	Maximum current output: 500mA
Compliance: ±12V	Current increment during scan: 1mA @1A/ms
CV and LSV scan rate: 0.001mV~10000V/s	Potential increment during scan: 0.076mV@1V/ms
CA and CC pulse width: 0.0001~65000s	DPV and NPV pulse width: 0.0001~1000s
SWV frequency:0.001~100KHz	CV minimum potential increment: 0.075mV
AD data acquisition:16bit@1MHz,20bit @1kHz	IMP frequency:10μHz~1MHz
DA resolution:16bit, setup time:1μs	Current and potential range: automatic
Operating System requirements: Windows 7/win8/win10	Weight: 12Kg
Electrochemical Imp	edance Spectroscopy(EIS)
Signal generator	
Frequency range:10μHz~1MHz	AC signal amplitude: 1mV~2500mV
Frequency accuracy:0.005%	Signal resolution: 0.1mV RMS
DDS output impedance: 50Ω	DC Bias: -10V~+10V
Wave distortion: <1%	Waveform: sine wave, triangular wave, square wave
Scan mode: Logarithmic/linear, increase/decrease	'
Signa	l analyzer
Maximum integral time:10 ⁶ cycles or 10 ⁵ s	Measurement delay:0~10 ⁵ S
Minimum integral time:10ms or the longest time of	a cycle
DC offset compensation	
Potential compensation range: -10V~+10V	Current compensation range: -1A~+1A
Bandwidth adjustment: automatic and manual, 8-de	ecade frequency range

Techniques for each channel- CS3004

Stable polarization

- Open Circuit Potential (OCP)
- Potentiostatic (I-T curve)
- Galvanostatic

- Potentiodynamic (Tafel plot)
- Galvanodynamic (DGP)

Transient Polarization

- Multi Potential Steps
- Multi Current Steps
- Potential Stair-Step (VSTEP)
- Galvanic Stair-Step (ISTEP)

Chrono Method

- Chronopotentiometry (CP)
- Chronoamperametry (CA)
- Chronocaulometry (CC)

Voltammetry

- Linear Sweep Voltammetry (LSV)
- Cylic Voltammetry (CV)
- Staircase Voltammetry (SCV)
- Square Wave Voltammetry (SWV)
- Differential Pulse Voltammetry (DPV)
- Normal Pulse Voltammetry (NPV)#
- Differential Normal Pulse Voltammetry (DNPV)
- AC Voltammetry (ACV)
- 2nd harmonic AC Voltammetry (SHACV)
- Fourier Transform AC Voltammetry (FTACV)

Stripping Voltammetry

- Potentiostatic Stripping
- Linear Stripping
- Staircase Stripping
- Square Wave Stripping
- Differential Pulse Voltammetry Stripping
- Normal Pulse Voltammetry Stripping
- Differential Normal Pulse Voltammetry Stripping

Amperometric

- Differential Pulse Amperometry (DPA)
- Double Differential Pulse Amperometry (DDPA)
- Triple Pulse Amperometry (TPA)
- Integrated Pulse Amperometric Detection (IPAD)

Electrochemical Impedance Spectroscopy (EIS)

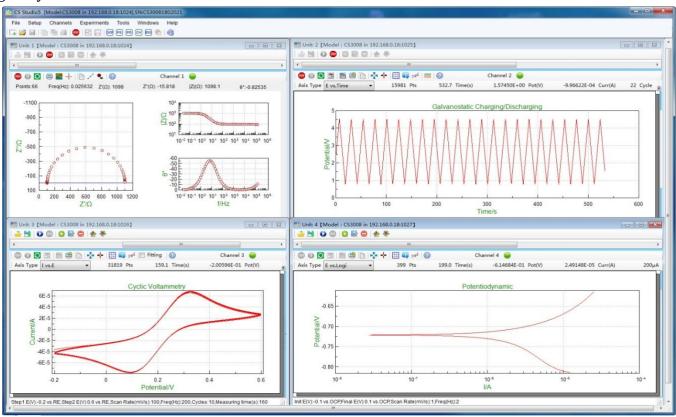
- EIS vs Frequency (IMP)
- EIS vs Time (IMPT)
- EIS vs Potential (IMPE)(Mott-Schottky)

Corrosion Measurements

- Cyclic polarization curve (CPP)
- Linear polarization curve (LPR)
- Electrochemical Potentiokinetic Reactivation (EPR)
- Electrochemical Noise (EN)
- Zero resistance Ammeter (ZRA)

Battery test

• Battery Charge and Discharge


- Galvanostatic Charge and Discharge (GCD)
- Potentiostatic Charging and Discharging(PCD)
- Potentiostatic Intermittent Titration Technique (PITT)
- Galvanostatic Intermittent Titration Technique (GITT)

Extensions

- Electrochemical Stripping/ Deposition
- Bulk Eletrolysis with Coulometry (BE)
- Rs Measurement

Simultaneous Measurements

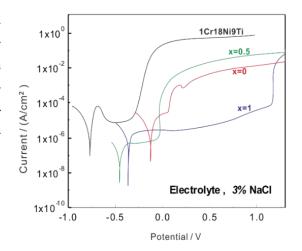
In each channel, the customer can conduct an experiment in each channel at the same time. This is especially useful if you have multi samples to be tested, and it will reduce your time greatly.

Technical advantages

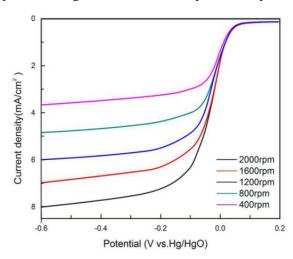
1. Impedance (EIS)

CS potentiostat applies correlation integral algorithm and dual-channel over-sampling technique, and has strong anti-interference ability. It is suitable for EIS measurements of high-impedance system (> $10^9\Omega$, such as coating, concrete etc.).

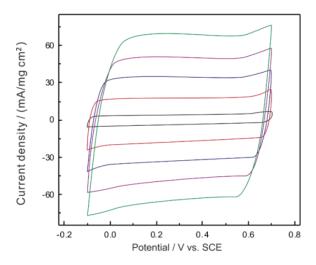
-200 mg/L 100 mg/L -150 200 mg/L 500 mg/L KΩ cm² 2000 mg/L -100 10 mHz -50 10 mHz 60 120 180 $Z'I K\Omega cm^2$


EIS of AA6063 Al alloy in Ce^{3+} containing 3% NaCl solution

2. Polarization curve


Tafel plot can be obtained. The user can set the anodic reversal current (passivation film breakdown current) of the cyclic polarization curve to obtain material's pitting potential and protection potential and evaluate the its susceptibility to intergranular corrosion. The software uses non-linear fitting to analyze polarization curve, and can make fast evaluation of material's anti-corrosion ability and inhibitors.

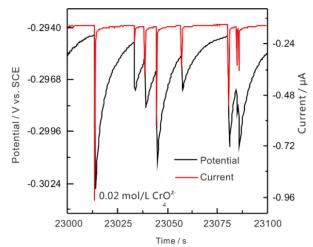
Polarization curve of Ti-based amorphous alloy & stainless steel in 3%NaCl solution



3. Voltammetry

Linear Sweep Voltammetry(LSV), Cyclic Voltammetry(CV), SCV, SWV, DPV, NPV, ACV, Stripping voltammetry etc. It integrates calculation of peak area, peak current and standard curve analysis.

LSV: mesoporous carbon material in 0.1M KOH

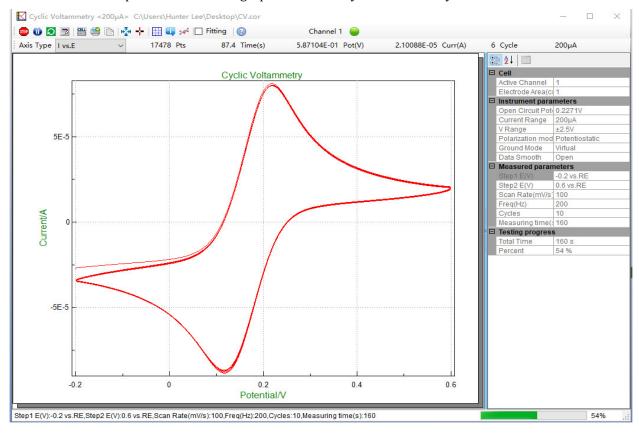

CV of PPy supercapacitor in 0.5 mol/L H₂SO₄

4. Electrochemical Noise

With high-resistance follower and zero-resistance ammeter, it measures the natural potential/current fluctuations in corrosion system. It can be used to study pitting corrosion, galvanic corrosion, crevice corrosion, and stress corrosion cracking etc. Based on calculation of noise resistance and pitting index, it can complete localized corrosion monitoring.

5. Full floating measurement

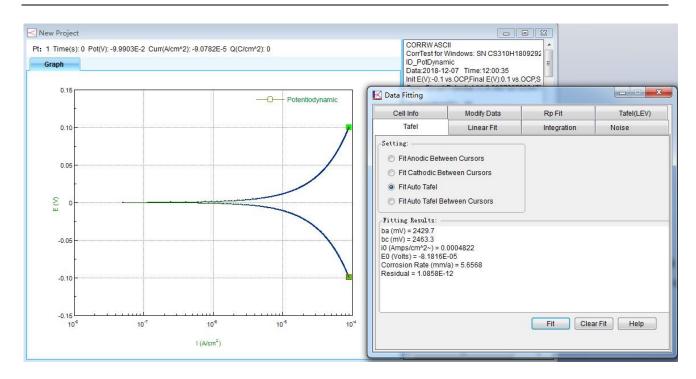
Full-floating mode be used for autoclave electrochemical measurements, on-line corrosion monitoring of metallic components under the ground (rebar in concrete, etc.)


6. Software development kit (SDK)

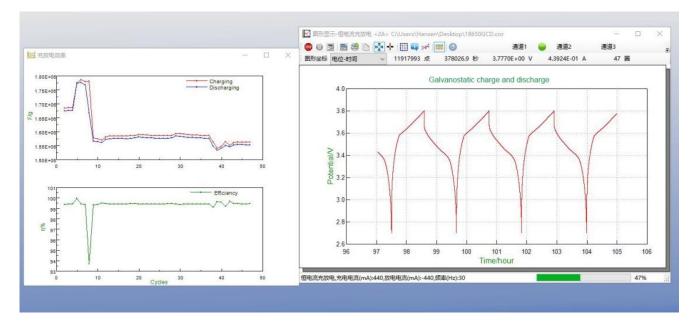
We are able to provide API functions and development examples, which facilitates some users' requirements for secondary development and self-defined measurements. We can provide .dll file for Labview etc.

Software Features

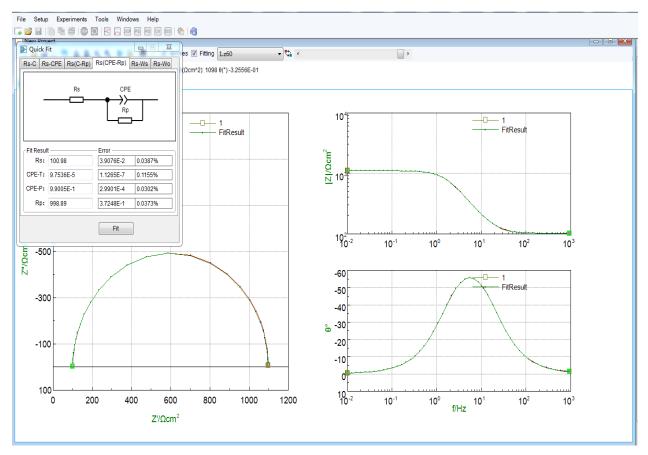
Cyclic voltammetry:


CS studio software provides users a versatile smoothing/differential/ integration kit, which can complete the calculation of peak height, peak area and peak potential of CV curves. In CV, during the data analysis, there is function of selecting exact cycle(s) to show. You can choose to see a cycle or some cycles as you want. You can also export data or vector graph of an exact cycle or several cycles.

Tafel plot and corrosion rate:


CS studio also provides powerful non-linear fitting on Butler-Volmer equation of polarization curve. It can calculate Tafel slope, corrosion current density, limitation current, polarization resistance, corrosion rate. It can also calculate the power spectrum density, noise resistance and noise spectrum resistance based on the electrochemical noise measurements.

Battery Test and analysis:


charge & discharge efficiency, capacity, specific capacitance, charge & discharge energy.

EIS analysis: Bode, Nyquist, Mott-Schottky plot

During EIS data analysis, there is built-in fitting function to draw the custom equivalent circuit.

Real time saving of data: The data can be automatically saved even in case of sudden power off.

Combination test: it can facilitate the automation of experiments and save time. With the unique function of combination test, you can choose several techniques, and set the wait time, the start time, and the cycles. Choose the experiments you want to run. Then you can make auto measurement of the set experiments as you want without having to wait in the lab. This function is especially useful if you have multi experiments to run and save your time greatly.

Data open: You can open the data files by txt format in notepad. Data can also be opened in Origin

Standard supply for a set CS3004

Instrument host CS3004*1 CS studio software package *1 Power cable * 1, Ethernet cable *1, Cell cable *8 Dummy cell *4

Manual *1

After-sales Service

- 1. Warranty period: 5 years.
- $2.\ Provide\ manual,\ software\ installation\ video\ \&\ training\ videos.$
- 3. Free repair service
- 4. Lifetime software upgrading(same model) and technical service.