论文集

使用CS系列电化学工作站发表的部分文章
[化学能源]
[1] Wang C, Wu L, Wang H, et al. Fabrication and Shell Optimization of Synergistic TiO2‐MoO3 Core–Shell Nanowire Array Anode for High Energy and Power Density Lithium‐Ion Batteries[J]. Advanced Functional Materials, 2015, 25(23):3524-3533. DOI: 10.1002/adfm.201500634

[2] Li R, Wang Y, Zhou C, et al. Carbon‐Stabilized High‐Capacity Ferroferric Oxide Nanorod Array for Flexible Solid‐State Alkaline Battery–Supercapacitor Hybrid Device with High Environmental Suitability[J]. Advanced Functional Materials, 2015, 25(33):5384-5394. DOI: 10.1002/adfm.201502265

[3] Feng, Zhou, Hong, et al. Fast and Controllable Electric-Field-Assisted Reactive Deposited Stable and Annealing-Free Perovskite toward Applicable High-Performance Solar Cells[J]. Advanced Functional Materials, 2017. DOI: 10.1002/adfm.201606156

[4] Wang, LJ. KOH-activated carbon aerogels derived from sodium carboxymethyl cellulose for high-performance supercapacitors and dye adsorption[J]. CHEM ENG J, 2017, 2017,310(-):300-306. DOI: 10.1016/j.cej.2016.10.121

[5] Jinxing Ma, Wang Z, Zhang J, et al. Cost-effective Chlorella biomass production from dilute wastewater using a novel photosynthetic microbial fuel cell (PMFC)[J]. Water Research, 2017. DOI: 10.1016/j.watres.2016.11.016

[6] Wang H G, Yuan C, Zhou R, et al. Self-sacrifice template formation of nitrogen-doped porous carbon microtubes towards high performance anode materials in lithium ion batteries[J]. Chemical Engineering Journal, 2017, 316(Complete):1004-1010. DOI: 10.1016/j.cej.2017.02.059

[7] Junling, Xinyu, Zhang, et al. Facile Formation of a Solid Electrolyte Interface as a Smart Blocking Layer for High-Stability Sulfur Cathode[J]. Advanced Materials, 2017, 29(26). DOI: 10.1002/adma.201700273

[8] Wenhua, Zuo, Chaoyue, et al. A Novel Phase-Transformation Activation Process toward Ni-Mn-O Nanoprism Arrays for 2.4 V Ultrahigh-Voltage Aqueous Supercapacitors.[J].Advanced materials (Deerfield Beach, Fla.), 2017. DOI: 10.1002/adma.201703463

[9] Huang Y, Ge J, Hu J, et al. Nitrogen‐Doped Porous Molybdenum Carbide and Phosphide Hybrids on a Carbon Matrix as Highly Effective Electrocatalysts for the Hydrogen Evolution Reaction[J]. Advanced Energy Materials, 2018, 8(6):1701601.1-1701601.9. DOI: 10.1002/aenm.201701601

[10] Junling, Xinyu, Zhang, et al. Facile Formation of a Solid Electrolyte Interface as a Smart Blocking Layer for High-Stability Sulfur Cathode[J]. Advanced Materials, 2017, 29(26). DOI: 10.1002/adma.201700273

[11] Wenhua, Zuo, Chaoyue, et al. A Novel Phase-Transformation Activation Process toward Ni-Mn-O Nanoprism Arrays for 2.4 V Ultrahigh-Voltage Aqueous Supercapacitors[J]. Advanced materials(Deerfield Beach, Fla.), 2017. DOI:10.1002/adma.201703463

[12] Yu M, Han Y, Li J, et al. CO2-activated porous carbon derived from cattail biomass for removal of malachite green dye and application as supercapacitors[J]. Chemical Engineering Journal, 2017,317(Complete):493-502. DOI: 10.1016/j.cej.2017.02.105

[13] Li L, Zhu J, Niu Y, et al. Efficient Production of Coaxial Core-Shell MnO@Carbon Nanopipes for Sustainable Electrochemical Energy Storage Applications[J]. ACS Sustainable Chemistry & Engineering,
2017:acssuschemeng.7b01256. DOI: 10.1021/acssuschemeng.7b01256

[14] Li L, Zhu J, Xu M, et al. In Situ Engineering Toward Core Regions: A Smart Way to Make Applicable FeF3@Carbon Nanoreactor Cathodes for Li-Ion Batteries[J]. ACS Appl. Mater. Interfaces, 2017. DOI:10.1021/acsami.7b04256

[15] Xiaotian Liu, Zhao E, Wang Z, et al. Nanofiber-structured Pr0.4Sr0.6Co0.2Fe0.7Nb0.1O3-δ-Gd0.2Ce0.8O1.9 symmetrical composite electrode for solid oxide fuel cells[J]. Ceramics International, 2017. DOI: 10.1016/j.ceramint.2017.05.135

[16] Zhou H, Zou X, Zhang K, et al. Molybdenum-Tungsten Mixed Oxide Deposited into Titanium Dioxide Nanotube Arrays for Ultrahigh Rate Supercapacitors[J]. Acs Applied Materials&Interfaces,2017:acsami.7b01871. DOI: 10.1021/acsami.7b01871

[17] Li M, Zhou S, Xu M. Graphene oxide supported magnesium oxide as an efficient cathode catalyst for power generation and wastewater treatment in single chamber microbial fuel cells[J]. Chemical Engineering Journal, 2017, 328:106-116. DOI: 10.1016/j.cej.2017.07.031

[18] Zhang L, Ge D, Qu G, et al. Formation of porous nitrogen-doped carbon-coating MnO nanospheres for advanced reversible lithium storage[J]. Nanoscale, 2017:10.1039.C7NR01425B. DOI: 10.1039/c7nr01425b

[19] Wang L, Zhang X, He Y, et al. Ultralight Conductive and Elastic Aerogel for Skeletal Muscle Atrophy Regeneration[J]. Advanced Functional Materials, 2019, 29(1):1806200.1-1806200.17. DOI: 10.1002/adfm.201806200

[20] Zhang W, Yan D, Tong X, et al. Ultrathin Lutetium Oxide Film as an Epitaxial Hole-Blocking Layer for Crystalline Bismuth Vanadate Water Splitting Photoanodes[J]. Advanced Functional Materials, 2018, 28(10):1705512. DOI: 10.1002/adfm.201705512

[21] Liu Jinping et al. Conformal Multifunctional Titania Shell on Iron Oxide Nanorod Conversion Electrode Enables High Stability Exceeding 30000 Cycles in Aqueous Electrolyte[J].  Advanced Functional Materials  2018,28,1800497. DOI:10.1002/adfm.201800497

[22] Zhang W, Chen R, Yin Z, et al. Surface Assistant Charge Separation in PEC Cu2S-Ni/Cu2O Cathode[J]. ACS Applied Materials & Interfaces, 2019, 11(37). DOI:10.1021/acsami.9b11976

[23] Kim J H, Kang T J. Diffusion and Current Generation in Porous Electrodes for Thermo-Electrochemical Cells[J]. ACS Applied Materials & Interfaces, 2019, 11(32). DOI: 10.1021/acsami.9b08381

[24] Meng T, Gao J, Liu Y, et al. Highly Puffed Co9S8/Carbon Nanofiber: A Functionalized S Carrier for Superior Li-S Battery[J]. ACS Applied Materials & Interfaces, 2019, 11(30). DOI: 10.1021/acsami.9b06497

[25] Song C, Zhang X, Wang L, et al. An Injectable Conductive Three-Dimensional Elastic Network by Tangled Surgical-Suture Spring for Heart Repair[J]. ACS Nano, 2019, 13, 14122−14137. DOI: 10.1021/acsnano.9b06761

[26] Yi H, Ma Y, Zhang S, et al. Robust Aqueous Zn-Ion Fiber Battery Based on High-Strength Cellulose Yarns[J]. ACS Sustainable Chemistry & Engineering, 2019, 7, 18894−18900. DOI: 10.1021/acssuschemeng.9b04188

[27] B M L A, B J Z, B Y G B, et al. Transition metals (Co, Mn, Cu) based composites as catalyst in microbial fuel cells application: The effect of catalyst composition[J]. Chemical Engineering Journal, 383. DOI: 10.1016/j.cej.2019.123152

[28] Yi Caoa, Shuaifeng Loua⁎, Zhen Suna, Weiping Tangb, Yulin Maa, Solvate ionic liquid boosting favorable interfaces kinetics to achieve the excellent performance of Li4Ti5O12 anodes in Li10GeP2S12 based solid-state batteries. Chemical Engineering Journal 382 (2020) 123046. DOI: 10.1016/j.cej.2019.123046

[29] Wang Y, Li T, Li Z, et al. Solution‐Processed Laminated Perovskite Layers for High‐Performance Solar Cells[J]. Advanced Functional Materials, 2019, 29(45). DOI: 10.1002/adfm.201903330

[30] Ryplida B, Lee K D, In I, et al. Light‐Induced Swelling‐Responsive Conductive, Adhesive, and Stretchable Wireless Film Hydrogel as Electronic Artificial Skin[J]. Advanced Functional Materials, 2019, 29(32). DOI: 10.1002/adfm.201903209

[31] Dong Y, Zhou M, Tu W, et al. Hollow Loofah-Like N, O-Co-Doped Carbon Tube for Electrocatalysis of Oxygen Reduction[J]. Advanced Functional Materials, 2019, 29(18):1900015. DOI: 10.1002/adfm.201900015

[32] Pan Q, Li A, Zhang Y, et al. Rational Design of 3D Hierarchical Ternary SnO2/TiO2/BiVO4 Arrays Photoanode toward Efficient Photoelectrochemical Performance[J]. Advanced ence, 2019, 7(3). DOI: 10.1002/advs.201902235

[33] Shi P, Wang C, Sun J, et al. Thermal conversion of polypyrrole nanotubes to nitrogen-doped carbon nanotubes for efficient water desalination using membrane capacitive deionization[J]. Separation and Purification Technology, 235. DOI:10.1016/j.seppur.2019.116196

[34] Yuquan, Zhang, Lu, et al. Nanopatterned metal–organic framework electrodes with improved capacitive deionization properties for highly efficient water desalination - ScienceDirect[J]. Separation & Purification Technology, 234:116124-116124. DOI:10.1016/j.seppur.2019.116124

[35] Yupeng Liu, Yaxiong Zhang, et al. New Insight into the Mechanism of Multivalent Ion Hybrid Supercapacitor: From the Effect of Potential Window Viewpoint[J]. Small, 2020, 16(46). DOI: 10.1002/smll.202003403

[36] Hu Y, Zhan G, Peng X, et al. Enhanced Cr(VI) removal of zero-valent iron with high proton conductive FeC2O4·2H2O Shell[J]. Chemical Engineering Journal, 389. DOI: 10.1016/j.cej.2020.124414

[37] Zhang X, Shao D, Lyu W, et al. Design of magnetically assembled electrode (MAE) with Ti/PbO2 and heterogeneous auxiliary electrodes (AEs): The functionality of AEs for efficient electrochemical oxidation[J]. Chemical Engineering Journal, 2020, 395:125145. DOI:10.1016/j.cej.2020.125145

[38] Huang J, Wang L, Jin Y, et al. Tuning the Rigidity of Silk Fibroin for the Transfer of Highly Stretchable Electronics[J]. Advanced Functional Materials, 2020, 30. DOI: 10.1002/adfm.202001518

[39] Zhao X, Yang Z, Kuklin A V, et al. BCN Encapsulated Nano-nickel Synergistically Promotes Ambient Electrochemical Dinitrogen Reduction[J]. ACS Applied Materials & Interfaces, 2020, 12, 31419−31430. DOI:10.1021/acsami.0c06649
[40] Satya Veer Singh, M. Praveen Kumar, Direct Evidence of an Efficient Plasmon-Induced Hot-Electron Transfer at an in Situ Grown Ag/TiO2 Interface for Highly Enhanced Solar H2 Generation[J]. ACS Applied Energy Materials, 2020, 3(2):1821-1830. DOI:10.1021/acsaem.9b02267

[41] Luo Z, Liu L, Yang X, et al. Revealing the Charge Storage Mechanism of Nickel Oxide Electrochromic Supercapacitor[J]. ACS Applied Materials & Interfaces, 2020, 12, 39098−39107. DOI:10.1021/acsami.0c09606

[42] Hu S, Shi Z, Zheng R, et al. A Superhydrophobic Liquid-Solid Contact Triboelectric Nanogenerator as Droplet Sensor for Biomedical Applications[J]. ACS Applied Materials & Interfaces, 2020, 12, 40021-40030. DOI:10.1021/acsami.0c10097

[43] Xu-Feng Zang, Zhendong Li, Yishan Fang, et al. Simultaneous Interphase Optimizations on the Large-Area Anode and Cathode of High-Energy-Density Lithium-Ion Pouch Cells by a Multiple Additives Strategy[J]. ACS Appl. Mater. Interfaces 2020, 12, 46084−46094. DOI:10.1021/acsami.0c12829

[44] Xin Wang, Sadeq Abbasi, Dezhao Zhang, Jiayuan Wang, Yangrunqian Wang, Zhendong Cheng,Hong Liu,* and Wenzhong Shen*. Electrochemical Deposition of CsPbBr3 Perovskite for Photovoltaic Devices with Robust Ambient Stability[J]. ACS Appl. Mater. Interfaces 2020, 12, 50455−50463. DOI:10.1021/acsami.0c14816

[45] Benny Ryplida, Insik In, and Sung Young Park*. Tunable Pressure Sensor of fCarbon Dot-Based Conductive.Hydrogel with Electrical, Mechanical, and Shape Recovery for Monitoring Human Motion[J]. ACS Appl Mate Interfaces, 2020, 12, 51766−51775. DOI:10.1021/acsami.0c16745

[46] Yanli Guo, Yun Zhou, Yanli Nan, Bo Li, and Xiaolong Song*. Ni-Based Nanoparticle-Embedded NDoped Carbon Nanohorns.Derived from Double Core−Shell CNH@PDA@NiMOFs for Oxygen.Electrocatalysis[J]. ACS Appl Mater Interfaces, 2020, 12, 12743−12754. DOI:10.1021/acsami.9b20532

[47] Tingbiao Yuan, Zheng Hu,Yuxin Zhao,Jinjie Fang. Two-Dimensional Amorphous SnOx from Liquid Metal: Mass Production, Phase Transfer, and Electrocatalytic CO2 Reduction toward Formic Acid. Nano Lett, 2020, 20, 4, 2916–2922. DOI:10.1021/acs.nanolett,0c00844

[48] Du S, Lin X, Li C, et al. CoSe2 modified Se-decorated CdS nanowire Schottky heterojunctions for highly efficient photocatalytic hydrogen evolution[J]. Chemical Engineering Journal, 2020, 389:124431. DOI:10.1016/j.cej.2020.124431

[49] Meng Li, et al. Investigating the electron shuttling characteristics of resazurin in enhancing bio-electricity generation in microbial fuel cell[J]. Chemical Engineering Journal, 2021.130924. DOI:10.1016/j.cej.2021.130924

[50] Yueshuai Wang, et al. Single metal atom oxide anchored Fe3O4-ED-rGO for highly efficient  photodecomposition of antibiotic residues under visible light illumination[J]. Applied Catalysis B: Environmental,(2022) 120740. Doi:10.1016/j.apcatb.2021.120740

[51] Bailin Tian, et al. Double-Exchange-Induced in situ Conductivity in Nickel-Based Oxyhydroxides: An Effective Descriptor for Electrocatalytic Oxygen Evolution[J]. Angewandte Chemie International Edition,2021, 60, 16448– 16456. DOI:10.1002/anie.202101906

[52] Yiding Jiao, et al. Engineering Polymer Glue towards 90% Zinc Utilization for 1000 Hours to Make High-Performance Zn-Ion Batteries[J]. Advanced Functional Materials, 202107652. DOI:10.1002/adfm.202107652

[53] Lingbin Xie, et al. WS2 moirésuperlattices derived from mechanical flexibility for hydrogen evolution reaction[J]. Nature Communications, 5070 (2021). DOI:10.1038/s41467-021-25381-1

[54] Wu-Ji Sun, et al. Built-in Electric Field Triggered Interfacial Accumulation Effect for Efficient Nitrate Removal at Ultra-Low Concentration and Electroreduction to Ammonia[J]. Angewandte Chemie International Edition, 2021, 60, 22933– 22939. DOI:10.1002/anie.202109785

[55] Yi Zhao, et al. High-Performance Aqueous Zinc Batteries Based on Organic/Organic Cathodes Integrating Multiredox Centers[J]. Advanced Materials, 2021, 33, 2106469. DOI: 10.1002/adma.202106469

[56] Zhi-Qiang Wang, et al. Rich-oxygen-doped FeSe2 nanosheets with high pseudocapacitance capacity as a highly stable anode for sodium ion battery[J]. Chemical Engineering Journal, 428 (2022) 132637. DOI:10.1016/j.cej.2021.132637

[57] Tingting Ye, et al. A Tissue-Like Soft All-Hydrogel Battery[J]. Advanced Materials, 202105120. DOI:10.1002/adma.202105120

[58] Tuo Xin, et al. 15-Crown-5 ether as efficient electrolyte additive for performance enhancement of aqueous Zn-ion batteries[J]. Chemical Engineering Journal, 2022.139572. DOI:10.1016/j.cej.2022.139572

[59] Shiwei Wei, et al. Recyclable molten-salt-assisted synthesis of N-doped porous carbon  nanosheets from coal tar pitch for high performance sodium batteries[J]. Chemical Engineering Journal, 2022.140540. DOI:10.1016/j.cej.2022.140540

[60] Zhe Bie, et al. One-Step Construction of a Polyporous and Zincophilic  Interface for Stable Zinc Metal Anodes[J]. Advanced Energy Materials, 202202683. DOI: 10.1002/aenm.202202683

[61] Dan Wang, et al. Multi-microenvironment synergistically promoting CO2 electroreduction activity on porous Cu nanosheets[J]. Applied Catalysis B: Environmental, 2022.122119. DOI:10.1016/j.apcatb.2022.122119

[62] Junbo Zhu, et al. A Molecular-Sieve Electrolyte Membrane enables Separator_x0002_Free Zinc Batteries with Ultralong Cycle Life[J]. Advanced Materials, 202207209. DOI:10.1002/adma.202207209

[63] Long Chen, et al. High-stable nonflammable electrolyte regulated by coordination-number rule for all-climate and safer lithium-ion batteries[J]. Energy Storage Materials55 (2023) 836–846. DOI:10.1016/j.ensm.2022.12.044

[64] Guowei Wang, et al. Direct Synthesis of Stable 1T‐MoS2 Doped with Ni Single Atoms for Water Splitting in Alkaline Media[J]. Small,2022.2107238. DOI:10.1002/smll.202107238

[65] Lina Tang, et al. High Configuration Entropy Activated Lattice Oxygen for O2 Formation on Perovskite Electrocatalyst[J]. Advanced Functional Materials, 202112157. DOI:10.1002/adfm.202112157

[66] Siyi Zhang, et al. Synergy of yolk-shelled structure and tunable oxygen defect over CdS/ CdCO3-CoS2: Wide band-gap semiconductors assist in efficient visible-light-driven H2 production and CO2 reduction[J]. Chemical Engineering Journal, 2022.140113. DOI: 10.1016/j.cej.2022.140113

[67] Qiu T, Cheng J, Liang Z, et al. Unveiling the nanoalloying modulation on hydrogen evolution activity of ruthenium-based electrocatalysts encapsulated by B/N co-doped graphitic nanotubes[J]. Applied Catalysis B: Environmental, 2022, 316: 121626. DOI: 10.1016/j.apcatb.2022.121626

[68] Su C, Li C, Li R, et al. Insights into highly efficient piezocatalytic molecule oxygen activation over Bi2Fe4O9: Active sites and mechanism[J]. Chemical Engineering Journal, 2023, 452: 139300. DOI: 10.1016/j.cej.2022.139300

[69] Wu Z, Liu B, Jing H, et al. Porous carbon framework decorated with carbon nanotubes encapsulating cobalt phosphide for efficient overall water splitting[J]. Journal of Colloid and Interface Science, 2023, 629: 22-32. DOI: 10.1016/j.jcis.2022.08.102

[70] Ahsan M, Fu P, Bie K, et al. Investigation of ceria-molten carbonate electrolyte, composite anode and its catalytical effect on various carbon fuels in molten carbonate direct coal/carbon fuel cell[J]. Fuel, 2023, 335: 126937. DOI: 10.1016/j.fuel.2022.126937

[71] Lin S W, Tong M H, Chen Y X, et al. CeO2/TiO2 Heterojunction Nanotube Arrays for Highly Efficient Visible-Light Photoelectrochemical Water Splitting[J]. ACS Applied Energy Materials, 2023. DOI: 10.1021/acsaem.2c03723

[72] Wei S, Deng X, Li W, et al. Recyclable molten-salt-assisted synthesis of N-doped porous carbon nanosheets from coal tar pitch for high performance sodium batteries[J]. Chemical Engineering Journal, 2023, 455: 140540. DOI: 10.1016/j.cej.2022.140540

[73] Lai C, Ji S, Zhou H, et al. Multi-configuration structure based on catalysis electrodes and composite membrane for efficient alkaline water splitting[J]. Chemical Engineering Journal, 2023, 454: 140373. DOI: 10.1016/j.cej.2022.140373

[74] Wu W, Wu Y, Zhang Z, et al. Multichannel electron transmission and multiple light scattering in CoCo PBA/CoSn(OH)6/Pt photocatalyst for effective conversion of simulated flue gas[J]. Fuel, 2023, 334: 126747. DOI: 10.1016/j.fuel.2022.126747

[75] Li L, Luo Y, Wang Y, et al. Rational design of a well-aligned metal–organic framework nanopillar array for superior lithium-sulfur batteries[J]. Chemical Engineering Journal, 2023, 454: 140043. DOI: 10.1016/j.cej.2022.140043

[76] Dong X, Li Z, Luo D, et al. Pre‐Protonated Vanadium Hexacyanoferrate for High Energy-Power and Anti-Freezing Proton Batteries[J]. Advanced Functional Materials, 2023, 2210473. DOI: 10.1002/adfm.202210473

[77] Bhat S, Uthappa U T, Sadhasivam T, et al. Abundant cilantro derived high surface area activated carbon (AC) for superior adsorption performances of cationic/anionic dyes and supercapacitor application[J]. Chemical Engineering Journal, 2023, 459: 141577. DOI: 10.1016/j.cej.2023.141577

[78] Liu L, Liu C, Wang M, et al. Low self-discharge all-solid-state electrochromic asymmetric supercapacitors at wide temperature toward efficient energy storage[J]. Chemical Engineering Journal, 2023, 456: 141022. DOI: 10.1016/j.cej.2022.141022

[79] Choi E Y, Kim D E, Lee S Y, et al. Cobalt nanoparticles-encapsulated holey nitrogen-doped carbon nanotubes for stable and efficient oxygen reduction and evolution reactions in rechargeable Zn-air batteries[J]. Applied Catalysis B: Environmental, 2023: 122386. DOI: 10.1016/j.apcatb.2023.122386

[80] Wu Y, Xu Z, Ren R, et al. Flexible Ammonium-Ion Pouch Cells Based on a Tunneled Manganese Dioxide Cathode[J]. ACS Applied Materials & Interfaces, 2023. DOI: 10.1021/acsami.3c00146

[81] Shuming Dou, et al. Ultrarapid Nanomanufacturing of High-Quality Bimetallic Anode Library toward Stable Potassium-Ion Storage[J]. Angewandte Chemie International Edition, 2023, 62, e202303600. DOI:10.1002/anie.202303600

[82] Qingchun Xu, et al. Photocatalytic 2-Iodoethanol Coupling to Produce 1,4-Butanediol Mediated by TiO2 and a Catalytic Nickel Complex[J]. Angewandte Chemie International Edition, 2023, 62, e202301668. DOI:10.1002/anie.202301668

[83] Wenhui Shi, et al. Transient and general synthesis of high_x0002_density and ultrasmall nanoparticles on two-dimensional porous carbon via coordinated carbothermal shock[J]. Nature communications, 2294 (2023). DOI:10.1038/s41467-023-38023-5

[84] Huitong Du, et al. Enriching Reaction Intermediates in Multishell Structured Copper Catalysts for Boosted Propanol Electrosynthesis from Carbon Monoxide[J]. ACS Nano, 2023, 17, 8663−8670. DOI:10.1021/acsnano.3c01516

[85] Hongquan Guo, et al. Ex Situ Reconstruction-Shaped Ir/CoO/Perovskite Heterojunction for Boosted Water Oxidation Reaction[J]. ACS catalysis, 2023, 13, 5007−5019. DOI:10.1021/acscatal.2c05684

[86] Huirong Wang, et al. Bifunctional Dynamic Adaptive Interphase Reconfiguration for Zinc Deposition Modulation and Side Reaction Suppression in Aqueous Zinc Ion Batteries[J]. ACS Nano, 2023, 3c04155. DOI:10.1021/acsnano.3c04155

[87] Junshan Li, et al. Selective Ethylene Glycol Oxidation to Formate on Nickel Selenide with Simultaneous Evolution of Hydrogen[J]. Advanced Science, 202300841. DOI:10.1002/advs.202300841

[88] Jing Liu, et al. Turning damages into benefits: Corrosion-engineered cobalt foam for highly efficient biomass upgrading coupled with H2 generation[J]. Chemical Engineering Journal, 2023.144877. DOI:10.1016/j.cej.2023.144877
 


[腐蚀与防护]
[1] Li, Xiaogang, Jin, et al. Optimizing the nickel content in weathering steels to enhance their corrosion resistance in acidic atmospheres[J]. Corrosion Science,2017. http://dx.doi.org/10.1016/j.corsci.2016.11.016

[2] Wei L , Zhao Z , Wang S , et al. Multiple micro-channels Ni3Si template fabricated by selective dissolution of Ni-Ni3Si eutectic[J]. Materials Letters, 2017, 186(JAN.1):375-377. http://dx.doi.org/10.1016/j.matlet.2016.10.041

[3] Xue Q , Sun C Y , Yu J Y , et al. Microstructure evolution of a Zn-Al coating co-deposited on low-carbon steel by pack cementation[J]. Journal of Alloys & Compounds, 2016, 699:1012-1021. http://dx.doi.org/10.1016/j.jallcom.2016.12.291

[4] Shi W , Wang T Z , Dong Z H , et al. Application of wire beam electrode technique to investigate the migrating behavior of corrosion inhibitors in mortar[J]. Construction & Building Materials, 2017, 134:167-175. http://dx.doi.org/10.1016/j.conbuildmat.2016.12.036

[5] Hang R , Liu Y , Bai L , et al. Electrochemical synthesis, corrosion behavior and cytocompatibility of Ni-Ti-O nanopores on NiTi alloy[J]. Materials Letters, 2017, 202(sep.1):5-8. http://dx.doi.org/10.1016/j.matlet.2017.05.089

[6] Cao Z , Wang H , Qu J , et al. One step GO/DTES co-deposition on steels: electro-induced fabrication and characterization of thickness-controlled coatings[J]. Chemical Engineering Journal, 2017, 320:588-607. http://dx.doi.org/10.1016/j.cej.2017.03.089

[7] Liu Y , Ren Z , Bai L , et al. Relationship between Ni release and cytocompatibility of Ni-Ti-O nanotubes prepared on biomedical NiTi alloy[J]. Corrosion Science, 2017, 123. http://dx.doi.org/10.1016/j.corsci.2017.05.006

[8] Zhang, Huan-huan, Pang, et al. Inhibition of the corrosion of X70 and Q235 steel in CO2-saturated brine by imidazoline-based inhibitor[J]. Journal of Electroanalytical Chemistry, 2017, 791:83-94.  http://dx.doi.org/10.1016/j.jelechem.2017.02.046

[9] Hongwei, Liu, Tingyue, et al. Corrosion inhibition and anti-bacterial efficacy of benzalkonium chloride in artificial CO2-saturated oilfield produced water[J]. Corrosion Science, 2017. DOI:10.1016/j.corsci.2017.01.006

[10] Wang Y , Zuo Y . The adsorption and inhibition behavior of two organic inhibitors for carbon steel in simulated concrete pore solution[J]. Corrosion Science, 2017, 118(APR.):24-30. http://dx.doi.org/10.1016/j.corsci.2017.01.008

[11] Huang H , Bu F . Correlations between the inhibition performances and the inhibitor structures of some azoles on the galvanic corrosion of copper coupled with silver in artificial seawater[J]. Corrosion Science, 165. DOI: 10.1016/j.corsci.2019.108413

[12] B W G A , B J H A , C Y M , et al. The application of novel lightweight functional aggregates on the mitigation of acidification damage in the external anode mortar during cathodic protection for reinforced concrete[J]. Corrosion Science, 165. https://doi.org/10.1016/j.corsci.2019.108366

[13] Chen Z , Nong Y , Chen Y , et al. Study on the adsorption of OH and CaOH+ on Fe (100) surface and their effect on passivation of steel bar: Experiments and DFT modelling[J]. Corrosion Science, 2020, 174:108804. https://doi.org/10.1016/j.corsci.2020.108804

[14] Feng X , Yan Q , Lu X , et al. Protection performance of the submerged sacrificial anode on the steel reinforcement in the conductive carbon fiber mortar column in splash zones of marine environments[J]. Corrosion Science, 2020:108818. https://doi.org/10.1016/j.corsci.2020.108818

[15] Wan S , Ma X Z , Miao C H , et al. Inhibition of 2-phenyl imidazoline on chloride-induced initial atmospheric corrosion of copper by quartz crystal microbalance and electrochemical impedance[J]. Corrosion Science,2020,170:108692. https://doi.org/10.1016/j.corsci.2020.108692

[16] He Y , Zhong X , Hu J , et al. Monitoring Corrosion Fatigue Crack Formation on Drill Steel Using Electrochemical Impedance Spectroscopy: Experiment and Modeling[J]. Corrosion Science, 2020, 175:108880. https://doi.org/10.1016/j.corsci.2020.108880

[17] C Y Y A , B Y L A . New insight into the negative difference effect in aluminium corrosion using in-situ electrochemical ICP-OES[J]. Corrosion Science, 168. https://doi.org/10.1016/j.corsci.2020.108568

[18] Zhang T , Wang J , Zhang G , et al. The corrosion promoting mechanism of Aspergillus niger on 5083 aluminum alloy and inhibition performance of miconazole nitrate[J]. Corrosion Science, 2020, 176:108930. https://doi.org/10.1016/j.corsci.2020.108930


[19] Wei G , Lu S Y , Li S , et al. Unmasking of the temperature window and mechanism for "loss of passivation" effect of a Cr-13 type martensite stainless steel[J]. Corrosion ence, 2020. https://doi.org/10.1016/j.corsci.2020.108951

[20] Huang H , Yang W . Corrosion behavior of AZ91D magnesium alloy in distilled water[J]. Arabian Journal of Chemistry, 2020, 13( 7):6044-6055. DOI:10.1016/j.arabjc.2020.05.004


[21] Chuanqiang Li ,et al.Effect of lithium content on the mechanical and corrosion behaviors of HCP binary Mg–Li alloys[J].Journal of Magnesium and Alloys,(2021) 569–580. DOI:https://doi.org/10.1016/j.jma.2020.02.022

[22] Cunxiu Zhang, et al. Tailoring the microstructure, mechanical and tribocorrosion performance of (CrNbTiAlV)Nx high-entropy nitride films by controlling nitrogen flow[J],journal of materials science &technology,2021.08.032 . DOI:https://doi.org/10.1016/j.jmst.2021.08.032

[23] Song L, Gao Z, Sun Q, et al. Corrosion protection performance of a coating with 2-aminino-5-mercato-1, 3, 4-thiadizole-loaded hollow mesoporous silica on copper[J]. Progress in Organic Coatings, 2023, 175: 107331. DOI: 10.1016/j.porgcoat.2022.107331

[24] Li J, Lin B, Zheng H, et al. Study on pitting corrosion behavior and semi in-situ pitting corrosion growth model of 304 L SS with elastic stress in NaCl corrosion environment[J]. Corrosion Science, 2023, 211: 110862. DOI: 10.1016/j.corsci.2022.110862

[25] Guo F, Duan S, Pan Y, et al. Stress corrosion behavior and microstructure analysis of Al-Zn-Mg-Cu alloys friction stir welded joints under different aging conditions[J]. Corrosion Science, 2023, 210: 110821. DOI: 10.1016/j.corsci.2022.110821


[26] Bokai Liao ,et al.Facile fabrication of multi superlyophobic nano soil coated-mesh surface with excellent corrosion resistance for efficient immiscible liquids separation[J].Separation and Purification Technology,187 (2022) 115354. DOI:https://doi.org/10.1016/j.indcrop.2022.115354

[27] Yaohong Liu ,et al.A novel Mg-Gd-Y-Zn-Cu-Ni alloy with excellent combination of strength and dissolution via peak-aging treatment[J].Journal of Magnesium and Alloys,11 (2023) 720–734. DOI:https://doi.org/10.1016/j.jma.2022.05.012

[28] Yueting Ma,et al.Galvanic corrosion of AA5052/304SS welded joint with Zn-based filler metal in marine engineering[J].Corrosion Science,2022.110912. DOI:https://doi.org/10.1016/j.corsci.2022.110912

[29] Hongwei Liu ,et al.Extracellular polymeric substances secreted by marine fungus Aspergillus terreus: Full characterization and detailed effects on aluminum alloy corrosion[J].Corrosion Science,209 (2022) 110703 . DOI:https://doi.org/10.1016/j.corsci.2022.110703

[30] Feng Yuan ,et al.Tuning the pitting performance of a Cr-13 type martensitic stainless steel by tempering time[J].Corrosion Science,(2022) 110346 . DOI:https://doi.org/10.1016/j.corsci.2022.110346

[31] Hongwei Liu ,et al.Corrosion inhibition behavior of X80 pipeline steel by imidazoline derivative in the CO2-saturated seawater containing sulfate-reducing
bacteria with organic carbon starvation[J].Corrosion Science,203 (2022) 110345 . DOI:https://doi.org/10.1016/j.corsci.2022.110345

[32] Jiakun Wang,et al.Microstructure evolution and acid corrosion behavior of CoCrFeNiCu1− xMox high-entropy alloy coatings fabricated by coaxial direct laser deposition[J].Corrosion Science,2022, 110108. DOI:https://doi.org/10.1016/j.corsci.2022.110108

[33] Jinbao Xue ,et al.Significance of waveform design to achieve bipolar electrochemical jet machining of passivating material via regulation of electrode reaction kinetics[J].INTERNATIONAL JOURNAL OF MACHINE TOOLS & MANUFACTURE,2022.103886. DOI:https://doi.org/10.1016/j.ijmachtools.2022.103886

[34] Yin Y, Li H, Pan S, et al. Electrochemical behaviour of passivation film formed on SLM-fabricated Hastelloy X superalloy surface in 10 wt.% NaNO3 solution[J]. Corrosion Science, 2022: 110494. https://doi.org/10.1016/j.corsci.2022.110494

[35] Hongwei Liu ,et al.Characterizations of the biomineralization film caused by marine Pseudomonas stutzeri and its mechanistic effects on X80 pipeline steel Corrosion[J].Journal of Materials Science & Technology,125 (2022) 15–28. DOI:https://doi.org/10.1016/j.jmst.2022.02.033

[36] Zhang Z Y, Lu S, Lv W G, et al. Enhanced corrosion resistance and biofunctionality of Zn–Al layered double hydroxide coating on micro-arc oxidized ZK60 Mg alloy via ion exchange[J]. Materials Chemistry and Physics, 2023, 299: 127482. DOI: 10.1016/j.matchemphys.2023.127482


[37] Hongwei Liu ,et al.Broken passive film and subsequent pitting corrosion behavior of 2205 duplex stainless steel induced by marine fungus Aspergillus terreus in artificial seawater[J].Corrosion Science,218 (2023) 111147 . DOI:https://doi.org/10.1016/j.corsci.2023.111147

[38] Hongwei Liu ,et al.Fungi corrosion of high-strength aluminum alloys with different microstructures caused by marine Aspergillus terreus under seawater drop[J].Corrosion Science,212 (2023) 110960 . DOI:https://doi.org/10.1016/j.corsci.2023.110960

[39] Yang Zhong ,et al.Effect of in-situ transverse magnetic field on microstructure, mechanical properties and corrosion resistance of the directed energy deposited 316L stainless steel[J].Additive manufacturing,68 (2023) 103508. DOI:https://doi.org/10.1016/j.addma.2023.103508


[纳米生物]
[1] Hejun L , Yao G , Leilei Z , et al. In simulated body fluid performance of polymorphic apatite coatings synthesized by pulsed electrodeposition[J]. Materials science & engineering, C. Materials for Biogical applications, 2017. http://dx.doi.org/10.1016/j.msec.2017.05.037

[2] Chen Y , Lu S , Zhang S , et al. Skin-like biosensor system via electrochemical channels for noninvasive blood glucose monitoring[J]. Adv, 2017, 3(12):e1701629. DOI:10.1126/sciadv.1701629

[3] Wang M , Ma Z , Li J , et al. Well-dispersed palladium nanoparticles on nickel- phosphorus nanosheets as efficient three-dimensional platform for superior catalytic glucose electro-oxidation and non-enzymatic sensing[J]. J Colloid Interface, 2017:355-364. https://doi.org/10.1016/j.jcis.2017.10.008

[4] Tian W , Chen F , Li Z , et al. Corrosion product concentration in a single three-dimensional pit and the associated pitting dynamics[J]. Corrosion science, 2020, 173:108775. DOI:10.1016/j.corsci.2020.108775

[5] Yuandong Liu ,et al.Long-Term Tracking and Dynamically Quantifying of Reversible Changes of Extracellular Ca2+ in Multiple Brain Regions of Freely Moving Animals[J].Angewandte Chemie-International Edition,2021, 60, 14429– 14437. DOI:doi.org/10.1002/anie.202102833

[6] Kim S G, Song J, Ryplida B, et al. Touchable Electrochemical Hydrogel Sensor for Detection of Reactive Oxygen Species‐induced Cellular Senescence in Articular Chondrocytes[J]. Advanced Functional Materials, 2023: 2213887. DOI: 10.1002/adfm.202213887

[7] Kim S G, Ryplida B, Jo H J, et al. Stimuli-responsive conductive hydrogel touch sensor for electrochemical and fluorescence monitoring of acetylcholinesterase activity and inhibition[J]. Chemical Engineering Journal, 2023, 452: 139028. DOI: 10.1016/j.cej.2022.139028

[8] Castellanos-Espinoza R, Fernández-Tavizón S, Sierra-Gómez U, et al. Green modification of Graphene oxide nanosheets under specific pH conditions[J]. Applied Surface Science, 2023: 156953. DOI: 10.1016/j.apsusc.2023.156953

[9] Li X, Qian L, Liu L, et al. Extra highways for proton diffusion in TiO2@ MIL-101-Cr/Nafion composite membranes with high single-cell performance[J]. Journal of Power Sources, 2023, 564: 232906. DOI: 10.1016/j.jpowsour.2023.232906


[环境相关]
[1] Liu T , Liu B , Yang L , et al. RGO/Ag2S/TiO2 ternary heterojunctions with highly enhanced UV-NIR photocatalytic activity and stability[J]. Applied Catalysis B Environmental, 2017, 204:593-601. http://dx.doi.org/10.1016/j.apcatb.2016.12.011

[2] Gao Y , Li S , Li Y , et al. Accelerated photocatalytic degradation of organic pollutant over metal-organic framework MIL-53(Fe) under visible LED light mediated by persulfate[J]. Applied Catalysis B Environmental, 2017,202:165-174.  http://dx.doi.org/10.1016/j.apcatb.2016.09.005

[3] Wang X , Wang Z , Chen H , et al. Removal of Cu(II) ions from contaminated waters using a conducting microfiltration membrane[J]. Journal of Hazardous Materials, 2017, 339(oct.5):182-190. http://dx.doi.org/10.1016/j.jhazmat.2017.06.038

[4] Wenjuan, Liao, Zilu, et al. Effect of Coexisting Fe(III) (oxyhydr)oxides on Cr(VI) Reduction by Fe(II)-Bearing Clay Minerals.[J]. Environmental science & technology, 2019, 53(23):13767-13775. DOI: 10.1021/acs.est.9b05208


[5] Lin Lin, Jiahui Hu, Jiahua Liu, Xin He, Bing Li, and Xiao-yan Li*.Selective Ammonium Removal from Synthetic Wastewater by Flow-Electrode Capacitive Deionization Using a Novel K2Ti2O5ActivatedCarbon Mixture Electrode. .[J]. Environmental science & technology,2020, 54, 12723−12731. https://dx.doi.org/10.1021/acs.est.0c04383

[6] Zhao L, Liu D, Zhang H, et al. Study on Electrochemical Reduction Mechanisms of Iron Oxides in Pipe Scale in Drinking Water Distribution System[J]. Water Research, 2023: 119597. DOI: 10.1016/j.watres.2023.119597


[7] Xia Y, Zuo H, Lv J, et al. Preparation of multi-layered microcapsule-shaped activated biomass carbon with ultrahigh surface area from bamboo parenchyma cells for energy storage and cationic dyes removal[J]. Journal of Cleaner Production, 2023: 136517. DOI: 10.1016/j.jclepro.2023.136517

[8] Du H, Chen G, Wang J. Highly selective electrochemical impedance spectroscopy-based graphene electrode for rapid detection of microplastics[J]. Science of The Total Environment, 2023, 862: 160873. DOI:10.1016/j.scitotenv.2022.160873

[9] Li Y, Yu B, Liu B, et al. Superior Fenton-like and photo-Fenton-like activity of MoS2@ TiO2/N-doped carbon nanofibers with phase-regulated and vertically grown MoS2 nanosheets[J]. Chemical Engineering Journal, 2023, 452: 139542. DOI: 10.1016/j.cej.2022.139542

[10] Huang R, Zhang T, Wang Q, et al. New insights into the cleaning mechanisms of conductive membrane by NaClO and electric field in terms of protein and polysaccharide degradation[J]. Chemical Engineering Journal, 2023, 453: 139891. DOI: 10.1016/j.cej.2022.139891


[11] Meng He ,et al.Aqueous pulsed electrochemistry promotes C−N bond formation via a one-pot cascade approach[J].Nature communications,(2023) 14:5088. DOI:10.1038/s41467-023-40892-9


[电化学分析]
[1] Chen Y , Lu S , Zhang S , et al. Skin-like biosensor system via electrochemical channels for noninvasive blood glucose monitoring[J]. Adv, 2017, 3(12):e1701629. DOI: 10.1126/sciadv.1701629

[2] Cai S, Yang H, Chen C, et al. Self-assembled deposition of polyaniline/cobalt porphyrin based on flexible PET to improve sensing of room-temperature NH3 sensor[J]. Journal of Alloys and Compounds, 2023, 934: 167566. DOI: /10.1016/j.jallcom.2022.167566

[3] Ma X Z, Meng L D, Cao X K, et al. Investigation on the initial atmospheric corrosion of mild steel in a simulated environment of industrial coastland by thin electrical resistance and electrochemical sensors[J]. Corrosion Science, 2022, 204: 110389. DOI: 10.1016/j.corsci.2022.110389

[4] Zhou Z, You C, Li Z, et al. Enhancing the Piezoelectric Sensing of CFO@ PDA/P (VDF-TrFE) Composite Films through Magnetic Field Orientation[J]. ACS Applied Materials & Interfaces, 2022, 14(40): 45679-45687. DOI: 10.1021/acsami.2c12861

[5] Li M, Jin Y T, Cao D Y, et al. Efficient decomposition of perfluorooctane sulfonate by electrochemical activation of peroxymonosulfate in aqueous solution: Efficacy, reaction mechanism, active sites, and application potential[J]. Water Research, 2022, 221: 118778. DOI: 10.1016/j.watres.2022.118778

[6] Wang H, He X, Huang X, et al. Vapor-based fabrication of PEDOT coating for wearable strain sensors with excellent sensitivity and self-cleaning capability[J]. Materials Today Chemistry, 2023, 28: 101361. DOI: 10.1016/j.mtchem.2022.101361


[7] Hani Nasser Abdelhamid ,et al.CelloZIFPaper: Cellulose-ZIF hybrid paper for heavy metal removal and electrochemical sensing[J].Chemical Engineering Journal,446 (2022) 136614. DOI:10.1016/j.cej.2022.136614

Copyright By © 2008~2028   武汉科思特仪器股份有限公司    版权所有   鄂ICP备07502907号-1

友情链接