催化

1. Efficient electroreduction of carbonyl compounds to alcohols over Fe/Fe2O3 interfaces[J].Nature Catalysis, 2025(4):8.DOI:10.1038/s41929-025-01316-7.


2. Strong dipole-promoted N-O bond hydrogenolysis enables ampere-level electrosynthesis of methylamine[J].Nature Chemistry, 2025.DOI:10.21203/rs.3.rs-4509225/v1.


3. Roll-to-roll synthesis of multielement heterostructured catalysts[J].Nature Synthesis, 2025(7):4.DOI:10.1038/s44160-025-00758-y.


4. Universal high-efficiency electrocatalytic olefin epoxidation via a surface-confined radical promotion[J].Nature Communications[2025-10-15].DOI:10.1038/s41467-024-53049-z.


5. Parameterization and quantification of two key operando physio-chemical descriptors for water-assisted electro-catalytic organic oxidation[J].Nature communications, 15(1):10145[2025-10-15].DOI:10.1038/s41467-024-54318-7.


6. Electrosynthesis of adipic acid with high faradaic efficiency within a wide potential window[J].Nature communications, 15(1):7685[2025-10-15].DOI:10.1038/s41467-024-51951-0.


7. Electrochemical valorization of HS innatural gas to sulfate under mild conditions[J].Nature Communications, 2025, 16(1).DOI:10.1038/s41467-025-62445-y.


8. Weakened hydrogen bond connectivity promotes interfacial mass transfer for industrial level scalable biomass electrooxidation[J].Energy & Environmental Science, 2024, 17(22):9.DOI:10.1039/D4EE03482A.


9. Defect-enabled local high-temperature field within carbon to promote in-plane integration of an electrocatalyst for CO2-to-CO conversion[J].Energy & Environmental Science, 2025, 18(3).DOI:10.1039/D4EE04511D.


10.Fermentation of starch for enhanced alkaline protease production by constructing an alkalophilic Bacillus pumilus strain[J].Appl Microbiol Biotechnol, 2001.DOI:10.1007/s002530100765.


11. Interfacial Hydrogen-Bond Network Regulation Tuned Water Dissociation Enables Selective Chlorination of Alkenes[J].Journal of the American Chemical Society, 2025.DOI:10.1021/jacs.5c00818.


12. Unlocking the potential of multifunctional and highly porous Ti3C2/TiO2@Bi2O3 – based MXene: Synergetic photocatalytic activation of peroxymonosulfate, hydrogen evolution and antimicrobial activity[J].Applied Catalysis B: Environmental, 2024, 359(000).DOI:10.1016/j.apcatb.2024.124493.


13.Solar-driven sugar production directly from CO2 via a customizable electrocatalytic–biocatalytic flow system Nature Communications. Pub Date : 2024-03-25 , DOI: 10.1038/s41467-024-46954-w13.Solar-driven sugar production directly from CO2 via a customizable electrocatalytic–biocatalytic flow  system .

Nature Communications. Pub Date : 2024-03-25 , DOI: 10.1038/s41467-024-46954-w


14.Ultrastable electrocatalytic seawater splitting at ampere-level current density. 

Nature Sustainability. Pub Date : 2024-02-09 , DOI: 10.1038/s41893-023-01263-w


15. Transient and general synthesis of high-density and ultrasmall nanoparticles on two-dimensional porous carbon via coordinated carbothermal shock.  

Nature Communications. Pub Date : 2023-04-21 , DOI: 10.1038/s41467-023-38023-5


16. Proton transfer mediator for boosting the current density of biomass electrooxidation to the ampere level . 

Energy & Environmental Science. Pub Date : 2024-01-12 , DOI: 10.1039/d3ee04543a


17. Rational Design of Dynamic Interface Water Evolution on Turing Electrocatalyst toward the Industrial Hydrogen Production.

Advanced Materials. Pub Date : 2024-03-29 , DOI: 10.1002/adma.202401110


18. Interfacial Electron Transfer in PbI2@Single-Walled Carbon Nanotube van der Waals Heterostructures for High-Stability Self-Powered Photodetectors.  

Journal of the American Chemical Society. Pub Date : 2024-02-22 , DOI: 10.1021/jacs.3c14188


19.Recycling Spent Ternary Cathodes to Oxygen Evolution Catalysts for Pure Water Anion-Exchange Membrane Electrolysis.  

ACS Nano. Pub Date : 2024-08-11 , DOI: 10.1021/acsnano.4c07340


20. Heterojunction photocatalyst MnO2-CsSnI3 for highly efficient formaldehyde oxidation at room temperature. 

Chemical  Engineering Journal Pub. Date : 2024-08-10 , DOI: 10.1016/j.cej.2024.154697


21.Regulating intermediate adsorption and H2dissociation on a diatomic catalyst to promote electrocatalytic nitrate reduction to ammonia. 

Energy & Environmental Science. Pub Date : 2024-08-07 , DOI: 10.1039/d4ee02747g


22. Switching Product Selectivity in CO2 Electroreduction via Cu−S Bond Length Variation.  

Angewandte Chemie International Edition. Pub Date : 2024-07-08 , DOI: 10.1002/anie.202409206


23. Manipulating dual effects of morphology and oxygen vacancies through the incorporation of CuO onto CeOnanospheres for electrochemical CO2 reduction 

Chemical Engineering Journal. Pub Date : 2024-06-25 , DOI: 10.1016/j.cej.2024.153506


24.Ni/N-modulated biomass pyrolysis to make carbon-based catalysts for electrochemical CO2 -to-CO conversion.

Nano Energy. Pub Date : 2024-04-23 , DOI: 10.1016/j.nanoen.2024.109658


25. Construction of Low-Coordination Cu−C2 Single-Atoms Electrocatalyst Facilitating the Efficient Electrochemical CO2 Reduction to Methane.

Angewandte Chemie International Edition. Pub Date : 2023-10-24 , DOI: 10.1002/anie.202314121


26. In-situ reconstruction of 
Bi60In2O93  nanotube for stable electroreduction of CO2 at ampere-current densities. 

Applied Catalysis B: Environment and Energy. Pub Date : 2023-09-26 , DOI: 10.1016/j.apcatb.2023.123342


27. Benchmarking the pH–Stability Relationship of Metal Oxide Anodes in Anion Exchange Membrane Water Electrolysis
ACS Sustainable Chemistry & Engineering. Pub Date : 2023-07-25 , DOI: 10.1021/acssuschemeng.3c01619


28. Turning damages into benefits: Corrosion-engineered cobalt foam for highly efficient biomass upgrading coupled with H2   generation.

Chemical Engineering Journal. Pub Date : 2023-07-17 , DOI: 10.1016/j.cej.2023.144877


29. Photocatalytic 2-Iodoethanol Coupling to Produce 1,4-Butanediol Mediated by TiO2 and a Catalytic Nickel Complex.

Angewandte Chemie International Edition. Pub Date : 2023-06-09 , DOI: 10.1002/anie.202301668


30. Enriching Reaction Intermediates in Multishell Structured Copper Catalysts for Boosted Propanol Electrosynthesis from Carbon Monoxide.

ACS Nano. Pub Date : 2023-04-17 , DOI: 10.1021/acsnano.3c01516


31. Multi-microenvironment synergistically promoting CO2  electroreduction activity on porous Cu nanosheets.

Applied Catalysis B: Environment and Energy. Pub Date : 2022-10-28 , DOI: 10.1016/j.apcatb.2022.122119







Copyright By © 2008~2025   武汉科思特仪器股份有限公司    版权所有   鄂ICP备07502907号-1   免责声明

友情链接